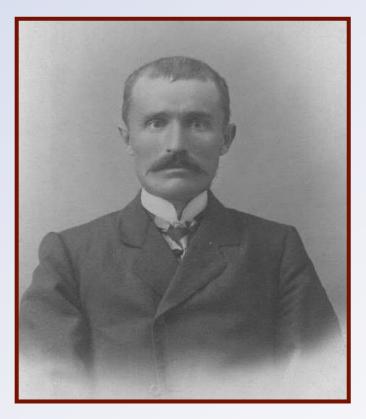
Devoted to 100 Anniversary of Professor Mikhail Slinko

MIKHAIL GAVRILOVICH SLINKO as a PERSON, a SOLDIER and a SCIENTIST («M.G.»)


15.09.1914 - 18.07.2008

Prof. Marina SLINKO

FAMILY

Father

Gavrila Artem'evich SLINKO

Mother

Vassa Gur'janovna SLINKO

(1874 - 1949)

(1884-1974)

G.A. SLINKO was a driver and mechanical engineer. During the First World War was a driver of a field ambulance and saved many poisoned men during the gas attack of German troops. He was awarded by one of the highest decoration- St.George cross.

SCHOOL

1922 - 1932

Physicists
 Andrei Saharov

- B.P. Gukov M.V.Volkenstein S.M.Rutov G. Zatsepin
- Engineers
 S.N.Chrushev

Artists Vera Holodnaja Alexei Batalov Marija Mironova Igor Il'inskii Alexander Shirvindt

 Poets Marina Tsvetaeva

- Mathematicians
 V.J.Kozlov
- Chemists Nikolai Plate
- Historians
 S.S.Shmidt
 N.Edelman
- Lawyers
 G.P.Padva

Many outstanding Russian scientists, architectures, poets, musicians and artist were graduated from the school N10.

graduated in 1932

Director Ivan Kuzmich Novikov-the talent teacher, created the new theory of secondary school education. His book «The planning of the work in school» published in 1947 was translated into 9 languages.

Work and Study



Years	Places of work and study				
1932	Graduated from the School				
1933	Work at the	Work at the			
1934	Institute for Design of Plants for the Basic Chemical Industry (GIPROCHIM)	Mendeleev Institute			
1935		Study at 3-d Course of Mendeleev Institute		Physical	
1936				department of Moscow	
1937				State	
1938			Scientific Institute of Fertilizers and Pest Control	University	
1939					
1940					
1941					

Teachers

1932-1937

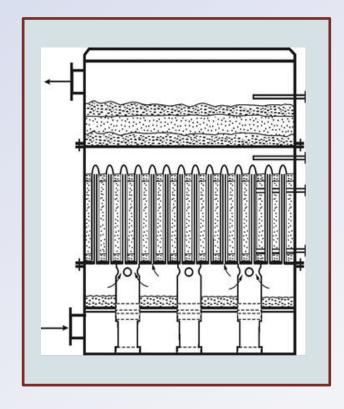
GIPROCHIM and Mendeleev Institute

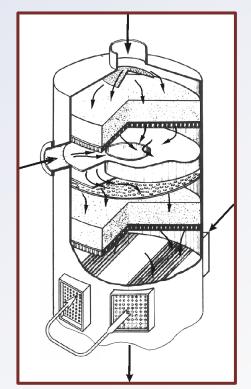
- From 1933 to 1937 simultaneously he was a professor of the Mendeleev University of Chemical Technology, Leading engineer of ministry of Chemical Industry and the ministry of the heavy Industry of the USSR.
- The main scientific results of prof.
 N.F. Yushkevich:
 - Yushkevich method of sulfur production from pyrites;
 - The development of active vanadium catalysts for sulfuric acid production
 - (Yushkevich N.F., Shochin I.N. "Active vanadium catalyst for sulfuric acid production and the change of Pt catalyst for the new vanadium catalyst" The Journal of Russian Chemical Industry, 1929).

Prof. Nokolai YUSHKEVICH 1885-1937

The unity of theory, practice and education

From 1933- on the position of Chemical Engineer in Giprochim and Mendeleev Institute

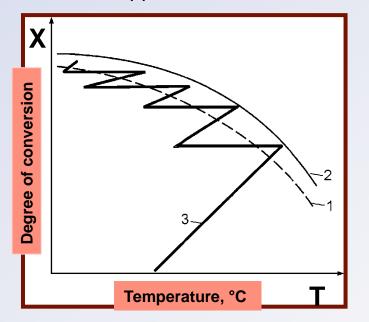

- Under the supervision of Nicholai Yushkevich the following work has been done:
- 1932 participated in design and startup of the plant sulfur production from pyrites in Kalat (Ural in Russia)
- 1932 Setting in and mathematical analysis of a lead tower chamber process of sulfuric acid production in Voskresensk (Moscow region)
- 1933-1935 Mathematical modeling of the replacement of platinum catalysts to vanadium catalysts for the use of the catalytic contact process of sulfuric acid production


Reactor K-39

1937-1939

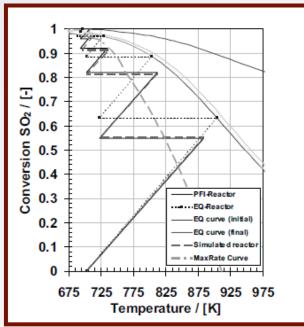
Reactor K-39, the main reactor of sulfuric acid production was designed

Reactor from USA of Selden firm



Medal of the State Stalin Prize, 1943

M. G. SLINKO designed a reactor for the oxidation of SO_2 into SO_3 in the production of sulfuric acid by the contact process with adiabatic catalyst layers and intermediate cooling between the layers.

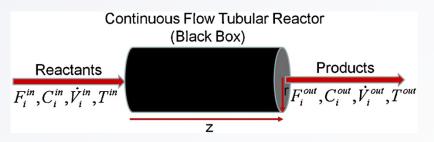

Beginning of Mathematical 1937-1939 Modeling of Chemical Reactors

The apparatus was designed by solving nonlinear differential equations by graphic and other approximate methods.

G.K. Boreskov, M.G. Slinko, Zh. Prikl. Khim 16 (9-10), 377, 1943. // Principles of the design of Contact Reactors for reversible exothermic reactions

Optimization studies in sulfuric acid production by Anton A. Kiss, Costin S. Bildea, Peter J.T. Verheijen

16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, W. Marquardt, C. Pantelides (Editors), 2006 Elsevier


Theory of similarity 1937-1939 and the black box methods were rejected for mathematical modeling of chemical reactors

«M.G.» demonstrated that similarity theory cannot be applied for the scale-up and design of chemical reactors

From one side to keep the same the reaction rate

From the other side to keep the same the influence of hydrodynamics upon the reaction rate in order to keep constant the Pe criteria

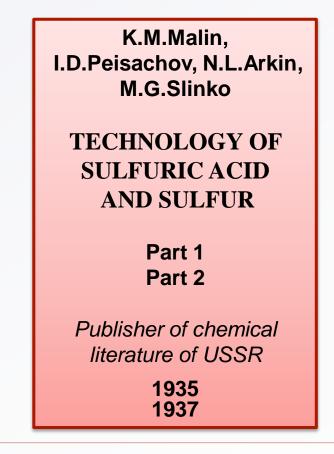
L is the characteristic length, v the velocity.

Also «M.G.» denoted the treating a reactor as a black box. The method of multiplecorrelations to find a functional correlations between parameters at the inlet and outlet of a reactor were rejected, because they did not reflect the peculiarities of the process and could not serve as a basis for the scaling-up.

must be constant

 $L \times v$ must be constant

V


First publications

Prof. Malin Konstantin Mikhajlovich – one of the leading scientists of Scientific Institute of Fertilizers and Pest Control.

Under the supervision of prof. Malin 2 textbooks were published, where some calculations of MG were included.

1932-1941

Friendship with G.K.Boreskov

M.G. Slinko

G.K. Boreskov

- G.K. Boreskov, M.G. Slinko "Simulations of tubular contact reactor for SO₂ oxidation" Russian Journal of Chemical Industry, 1936, 13, N4, 221-225
- G.K. Boreskov, M.G. Slinko "Simulations of tubular contact reactor for SO₂ oxidation" Russian Journal of Chemical Industry, 1936, 13, N5, 287-294
- K.A .Malin, N.L. Arkin, G.K. Boreskov, M.G. Slinko "Technology of sulfuric acid production" Goschimisdat, Moscow, 1941
- "Principles of the design of contact apparatuses for reversible exothermic reactions" G.K. Boreskov, M.G. Slinko, Zh. Prikl. Khim, 1943 16 (9-10), 377

Work and Study

Years	Places of work and study				
1932	Graduated from the School				
1933	Work at the	Work at the			
1934	Institute for Design of Plants for the Basic Chemical Industry (GIPROCHIM)	Mendeleev Institute			
1935		Study at 3-d Course of Mendeleev Institute		Physical	
1936				department of Moscow	
1937				State	
1938			Scientific Institute of Fertilizers and Pest Control	University	
1939					
1940					
1941					

Teachers

1935-1941

MOSCOW STATE UNIVERSITY

- An outstanding theoretical physicist, the Nobel Laureate in Physics for the year 1958 together with Pavel Cherenkov and Ilya Frank for the discovery and the interpretation of the radiation of electrons moving through matter faster than the speed of light (the Cerenkov effect)
- Igor Tamm was first to demonstrate high energy electron levels in the surface caused by the difference between the binding forces at the surface and in the bulk

I. Tamm (1932). "On the possible bound states of electrons on a crystal surface". *Phys. Z. Soviet Union* 1: 733.

Prof. Igor Yevgenyevich Tamm 1895 – 1971

• Diploma topic of M.G. Slinko: definition of interference in the electronic states associated with the statistical fluctuations due to the discrete structure of matter and the thermal motion of charge carriers

19 of June 1941 «M.G.» Graduated from Moscow State University with Honors Diploma

Students of physical department of MSU, graduated with honours diploma

(From left to right : Zatsepin, Panchenko, Slinko, Petrov, Chentsov)

Second World War

1941-1945

2000 tons of light oil were extracted In Karpat mountains and were distributed among 546 tanks, 3432 lorries, 585 cannons и 31 rocket launcher

V. F. Konkov, Rear services and supply of Soviet Army, (in Russian) 1982, N6, p.32

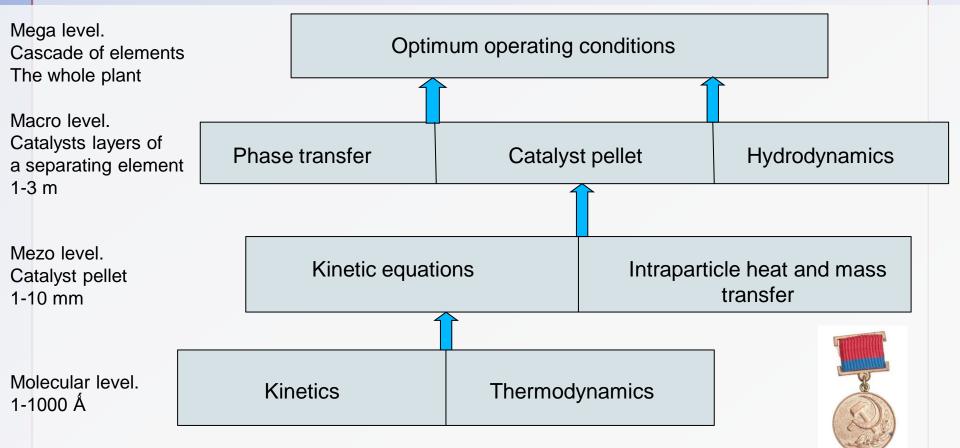
Returning to the peaceful life

G.K.Boreskov, 1946, the head of the laboratory of technical catalysis In Karpov Institute

G.K. Boreskov and M.G. Slinko

Karpov institute - one of the main Institutes of Ministery of Chemical Industry

1946



In 1946-1949 Karpov Institute was involved in atomic project

Atomic Project

1946-1948

Heavy Water Production by Catalytic Hydrogen-steam Exchange

1948-the plant for heavy water production in Chirchik city in Uzbekistan began to work.

In 1972 on the basis of the results of mathematical modelling the intensification of plant for heavy water production in Ukraine had been done and this work was awarded with the State prize of Ukraine.

Atomic Project

1946-1948

Kinetics of Catalytic Hydrogen-steam Exchange Reaction over Ni-Cr catalysts HD + $H_20 \leftrightarrow H_2$ + HDO The first level

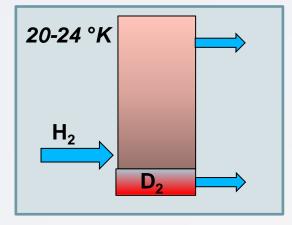
$$W_r = k_2 (\alpha c_{HDO} \lambda^{0.5} - c_{HD} \lambda^{-0.5})$$

 $\frac{P_{_{H_2}}}{P_{_{H2O}}}$ where W_r -real reaction rate, α -separation factor, λ =

The second level-the catalyst pellet $W_{obs} = S \begin{bmatrix} 2D \int_{C_c}^{C_s} W_r(c) dc \end{bmatrix}^{0.5}$ $k_{obs} = S \begin{bmatrix} \frac{k_2 D_1}{A\alpha + B \frac{D_1}{D_1}} \end{bmatrix}$ upon the other parameters, which were nearly constant; D₁ and D₂-diffusion coefficients of bydrogen

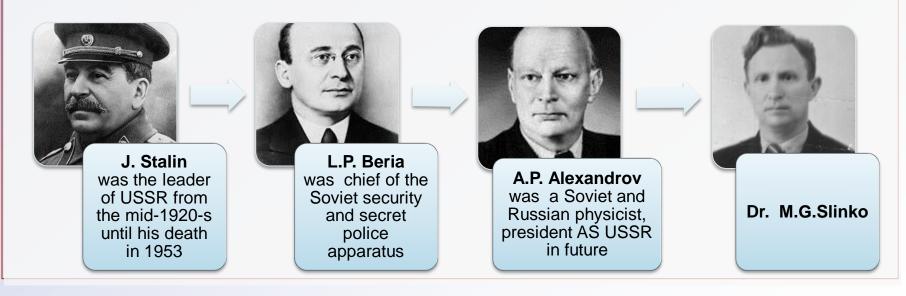
A and B factors, which determine the dependence of direct and reverse reaction coefficients of hydrogen and water vapor

1949 - PhD work on kinetics of isotope exchange between hydrogen and water

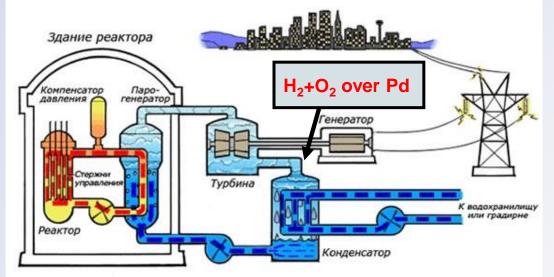

1952, M.G.Slinko, G.K.Boreskov" About kinetics of reversible reactions in the region of internal diffusion" Russian J.Phys.Chem, v.26, N2, 235

1965, E.S. Nedumova, G.K. Boreskov, M.G. Slin'ko "Kinetics of isotope exchange between hydrogen and water vapor over Ni catalysts" 1. Effect of transport processes on reaction rate. Kinetica I kataliz, 6, N1, p. 65 1965, E.S. Nedumova, G.K. Boreskov, M.G. Slin'ko "Kinetics of isotope exchange between hydrogen and water vapor over Ni catalysts" Effect of pressure in the region of the internal diffusion. . Kinetica I kataliz №2, p. 360.

Atomic Project


1952-1954

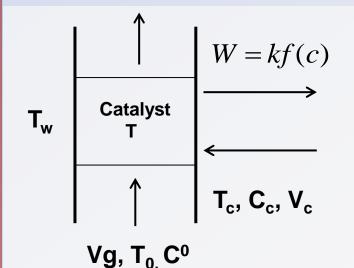
The method of heavy water production-low temperature distillation of the liquid hydrogen


To avoid an explosion the concentration of oxygen in hydrogen had to be less than 10⁻¹⁰ molar fractions, i.e. one molecule of oxygen for 10¹⁰ molecules of hydrogen.

Atomic Project 1953-1954 The first in the world Obninsk Nuclear Power

Station was designed

Academician Kurchatov I.V.


The ignition of hydrogen was the main reason of a blast at a Japanese atomic power reactor in Fukushima in 2011.

Pressurized Water Reactor (PWR)

Protection of nuclear installations from a blast of the explosive air gas mixture formed as a result of water radiolysis in atomic reactors..

In its 48 years of operation there were no significant incidents resulting in radioactive release to the environment exceeding permissible limits.

Stability of a reactor with 1953-1954 a (well mixed) bed with exothermic reaction

For all types of heat transfer

$$T - T_0 < \frac{E}{RT^2} (P_m - U) \text{ where}$$
$$U = \frac{\lambda c_v (T_w - T_0) + \mu c_c (T_w - T)_c}{(\alpha S_n + \lambda c_v + \mu c_c) \frac{RT^2}{E}}$$

Heat transfer only through a wall

$$\frac{T - T_w}{E / RT^2} < 1 + (c_0 - c) \frac{\partial \ln f(c)}{\partial c}$$

Heat transfer only with the circulating catalyst

$$\frac{T-T_c}{E/RT^2} < 1 + (c_0 - c)\frac{\partial \ln f(c)}{\partial c}$$

Heat transfer for autothermic processes

$$\frac{T-T_0}{E/RT^2} < 1 + (c_0 - c)\frac{\partial \ln f(c)}{\partial c}$$

$$P_{m} = 1 + (c_{o} - c) \frac{\partial \ln f(c)}{\partial c_{m}}$$

Criteria of temperature difference-determines the maximum temperature difference between catalyst temperature and temperature of initial gas or a wall

M.G.Slinko, Kinetika and Catalysis, v.1, N1, 1960, 153 Boreskov, G.K. and Slinko M.G., *Chem. Eng. Sci.*, 1961, vol. 14, p. 259. ESCRE (1960) Netherlands

Instructor for the Novel Technology 1956-1959 Department of the Central Committee of the USSR Communist Party

«M.G» was participated in the development of a 7 years plan of the development of Chemical Industry 1959-1965

«M.G» was a speech-write of N. S. Chrushev during XXI Congress of the CPSU concerning the questions of Chemical industry

The decision of the foundation of the Institute of catalysis was included into the materials of May Plenum of the USSR communist party in 1958.

The world's first case of mathematical **1958** modeling of a catalytic process on a computer

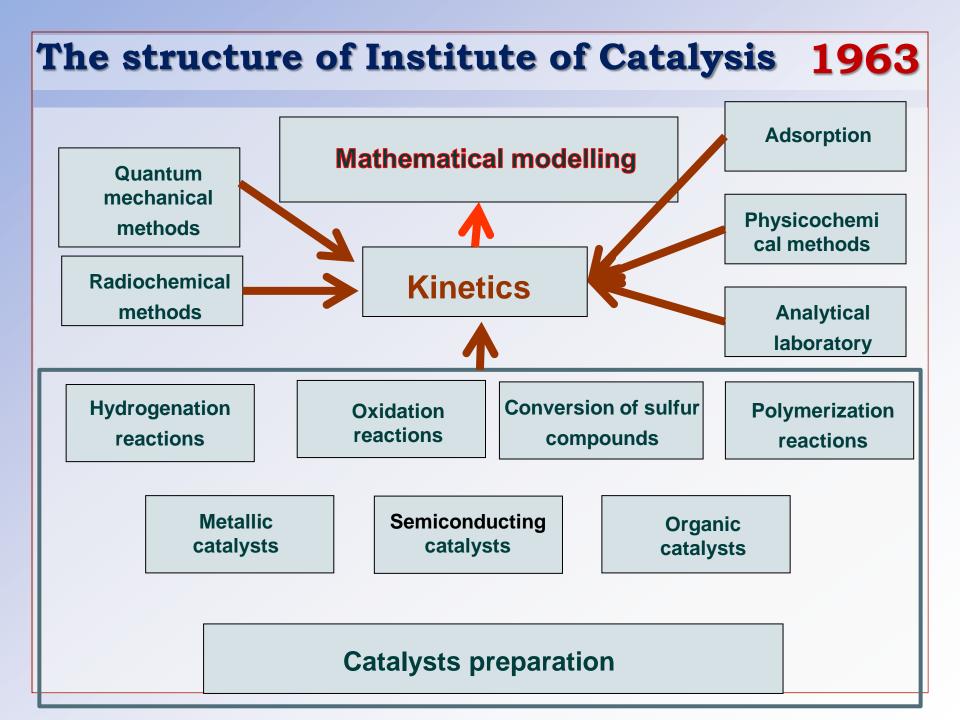
MN-7, a vacuum-tube analog computer, which could solve systems of nonlinear ordinary differential equations up to the sixth order.

Using MN-7 computer the exothermic catalytic reaction of ethylene oxidation to ethylene oxide was simulated.

Slinko M.G. "The role of mass and heat transfer processes during ethylene oxidation" Russian J.Phys.Chem.,1958, №4, v. 32. p. 943 Slinko M.G. "The influence of heat and mass transfer upon the rate of ethylene oxidation Chemical Industry, 1958, №3, p. 10

1959

Foundation of the Institute of Catalysis


The unity of a theory and application

The development of the theory and practice of the catalyst preparation with the given structure, selectivity and activity.

The detailed study of the mechanism of reactions and kinetic studies.

Mathematical modelling of heterogeneous catalytic reactions, processes and reactors on the basis of the detailed mechanism and kinetics

The first collaboration between USSR 1965 and a West Europe (UCB from Belgium) on Chemical Engineering

The development and the improvement of the catalyst and reactor design for acrylonitrile production via Sohio method

$C_3H_6 + NH_3 + 1.5 O_2 \rightarrow C_3H_3N + 3H_2O + 520 \text{ dj/mole}$

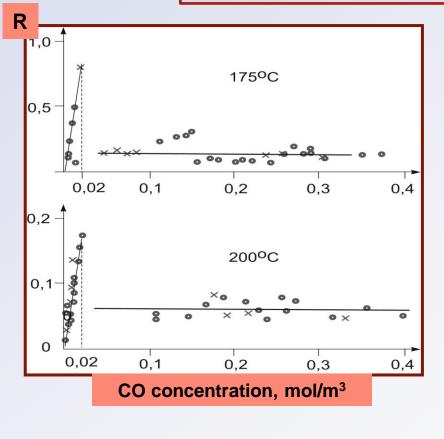
1969 For this work and successful collaboration with the UCB firm the Institute of catalysis was awarded by Order of Red Banner of Labor

N. Stas, M. Slinko, J. Vekemans, Veraiden

Yield increase from 54 to 66-70% with the increase of the intensity of the process from 35 to 75 of gr NAK/kg catal. was achieved

The study of stability 1961-1972 at different levels of a chemical process

Stability of a process over one pellet T.I. Zelenjak, V.S. Beskov, M.G. Slinko Kinetika and Catalysis, v.7, 1966, 865

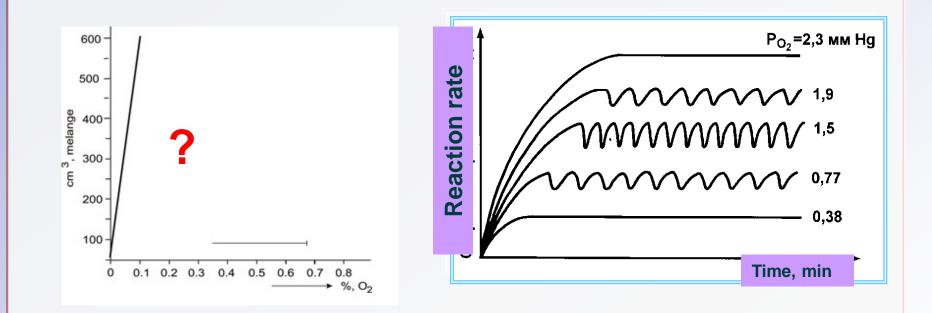

Stability of a reactor with not well mixed bed E.A. Ivanov, V.S. Beskov, M.G. Slinko, Theoretical foundations of chemical engineering 1, 1967, 488

Stability of a reactor with an external heat exchanger M.G. Slinko, A.L. Muller, Kinetika and Catalysis, v.2, 1961, 467

Stability of chemical-engineering schemes Yu. M. Volin, G.M. Ostrovskii, M.G. Slinko, Theoretical foundations of chemical engineering 6, 1972, 109

1971 First publication about the multiplicity of steady states in kinetic region

$CO + 3H_2 = CH_4 + H_2O$


- 1. CO +[Ni] \leftrightarrow [Ni-CO]
- 2. $3H_2$ + 6[Ni] \leftrightarrow 6[Ni-H]
- 3. 6[Ni-H] +[Ni-CO] \rightarrow CH₄+H₂O+ [Ni]

 $E_3 = E_{30} + RT \mu \theta_{CO}$

The first mathematical model, describing multiplicity of steady states was suggested

M.G. Slinko, V.S. Beskov, I.A. Dubjaga, Dokl. AN USSR, 204, 1972, 1174

The discovery of oscillations197during hydrogen oxidation over Ni

Beusch, H.; Fieguth, D.; Wicke, E. Chem. Eng. Tech. 1972, 44, 445

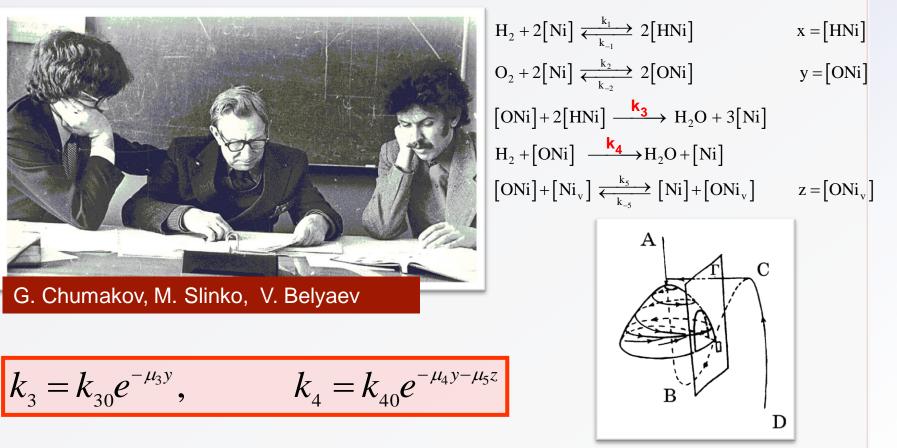
Belyaev V.D., Slinko M.M., Timoshenko V.I., M.G. Slinko . "Onset of Oscillations in Hydrogen Oxidation on Nickel, Kinetics and Catalysis, 1973, 17, 810

The first mathematical model, 1973 producing the oscillations in heterogeneous catalytic systems

$$D_{2} + 2[\text{Ni}] \iff 2[\text{OH}] \qquad x = [\text{ONi}]$$

$$H_{2} + 2[\text{Ni}] \iff 2[\text{ONi}] \qquad y = [\text{HNi}]$$

$$ONi] + 2[\text{HNi}] \implies H_{2}\text{O} + 3[\text{Ni}]$$


$$\frac{dx}{dt} = k_{1}(1 - x - y)^{2} - k_{-1}x^{2} - k_{3}xy^{2}e^{-\mu x}$$

$$\frac{dy}{dt} = k_{2}(1 - x - y)^{2} - k_{-2}x^{2} - k_{3}xy^{2}e^{-\mu x}$$

$$E_3 = E_{30} + \mu x$$

$$k_3 = k_{30} e^{-\mu x}$$

First Mathematical Model of Chaotic 1980 Oscillations in Heterogeneous Catalytic Systems

G.A. Chumakov, M.G.Slinko, V.D. Beljaev, Dokl. AN USSR, 253, 1980, 653 G.A. Chumakov, M.G.Slinko, Dokl. AN USSR, 266, 1982,1193

Scientific cooperation 1974-1980 between the USA and the USSR

M.G.Slinko coordinated the *US-USSR* exchange program in mathematical modelling of chemical reactors and processes

Prof. M.G.Slinko and Prof. Dan Luss in Novosibirsk, 1974

Prof.Ray, Dr.Vjatkin, Dr.Bykov, Dr.Akramov, Prof.Luss, Dr.Chumachenko, Dr.Yablonski, Prof.Aris

Isothermal sustained oscillations due to the influence of adsorbed species on the catalytic reaction rate

E.A. Ivanov, G.A. Chumakov, M.G. Slinko, D.D. Bruns, D. Luss//Chemical Engineering Science 35 (4), 795-803, 1980 Number and stability of the steady states of 4-stage reactions

G.A. Chumakov, V.D.Belyaev, R. Plikhta, V.I. Timoshenko, M.G. Slinko//Doklads Russian Academy of Sciences 253 (2), 418, 1980

1975 Department of mathematical modelling M.G.Slinko Processes in a **Kinetics of** Phase transitions fluidized bed catalytic reactions Shmelev A.S. Sheplev V.S. Timoshenko V.I. **Unsteady state** Liquid phase Complex processes and processes processes **Stability** Kuznetsov Yu.I. Ermakova A. Matros Yu.Sh. Computer **Numerical** Qualitative engineering methods methods Scomorochov V.B. Gaevoi V.P. Ivanov E.A.

Return to Moscow to Karpov Institute

1976

More than 450 papers on different topics had been written scince 1976

Kinetics

A method to study reaction kinetics over finely-dispersed catalyst in stationary and nonstationary conditions

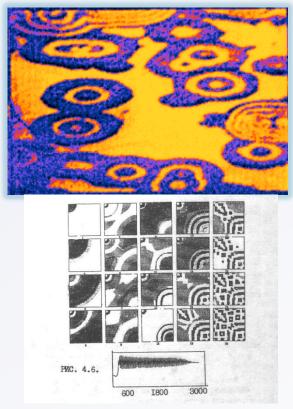
Membrane catalysis Selectivity in catalysis by hydrogen porous membranes

Processes

Crystallization Copolymerization Distillation Evaporation of aerosols Ethylene oxide production Hydrocarbon hydrogenation Processes with changing of the catalyst activity Production of synthetic liquid fuels from coal

Dynamics Modelling of chaotic oscillations Calculation of Lyapunov coefficients by analysis of self-sustained oscillations Study of the relaxation of a reaction rate over various kinds of catalytic surface

Reactors


Fixed *bed r*eactors Three-phase systems Ascending catalyst flow Fluidized bed reactors Chromatographic reactors

Makrokinetics

Gel-immobilised catalytic systems On the interfacial exchange at the surface convective structures in a liquid

Mathematical modelling 1986-1994 at the micro- and mezo-levels

Mathematical simulation of catalytic processes has to begin at the micro- and mezzo-levels. Transition from micro-level to mezo-level

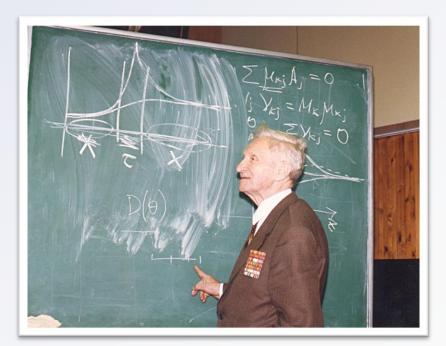
The development of distributed nonlinear models based on cooperative interactions and mobility of adsorbed species

$$R_i = k_i \theta_p I_a$$

$$I_{a} = \left[\theta_{*} + \sum_{1}^{p} \theta_{p} \exp(\varepsilon_{ap} / RT)\right]^{m}$$

 θ_* coverage of vacant sites

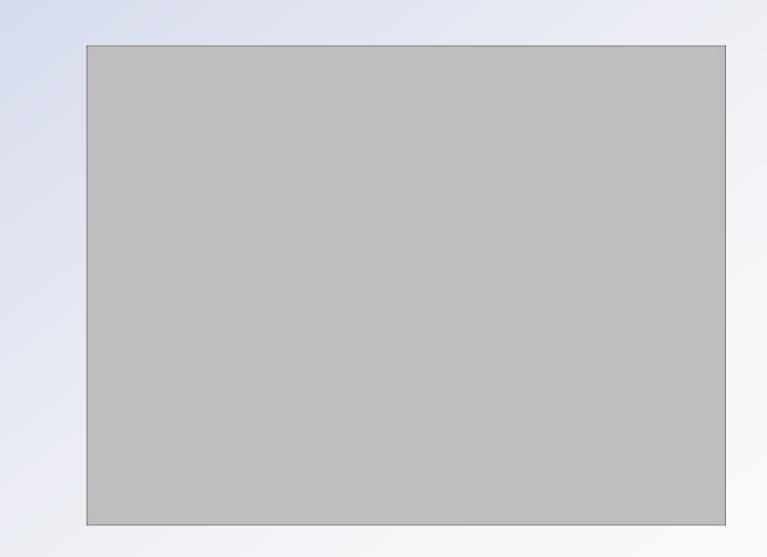
m – number of nearest neighbor sites


 ε – energy of lateral interactions

M.G.Slinko, G.G.Elenin "Mathematical Modelling of Phenomena on a Surface", Russian Chemistry Industry, 1991, N4, p.243

Last paper, written one month before death

M. G. Slinko "To the 100 Anniversary of Professor M.I.Temkin. The Founder of Chemical Kinetics" catalysis in Industry, N5, 2008, 5



2008

Memories about Husband, Father, Grandfather

and Great-grandfather

Thank you for your attention!